Program of the 47th Statistical Mechanics Meeting

Department of Mathematics Rutgers University May 13 and 14, 1982

The last semiannual Statistical Mechanics Meeting was held on May 13th and 14th. The next meeting is scheduled for December 16th and 17th.

As usual these titles are informal and, in many cases, there is only one speaker listed although the work may have been done with collaborators. Also, the addresses are incomplete. Anyone who is interested in communicating with a speaker and who requires a more complete address may obtain it by writing to:

Dr. Joel L. Lebowitz
Department of Mathematics, Hill Center
Rutgers University
New Brunswick, New Jersey 08903

A Functional Central Limit Theorem for a Dynamical System Detlef Dürr, Rutgers University

Remarks on the Central Limit Theorem for Weakly Dependent Random Variables

Sheldon Goldstein, Rutgers University

A Nonequilibrium Steady State with Long Range Static Correlations Herbert Spohn, Rutgers University

Duality in Stochastic Processes

Alladi Ramakrishnan, Madras University

- The Spectral Decomposition for a Class of Linear Transport Operators C. Cercignani and V. Protopopescu, Yale University
- Nonanalytical Response to an External Field

J. Piasecki, University of Warsaw

An Improvement of the Griffiths-Hurst-Sherman Inequality for the Ising Ferromagnet

Ross Graham, Princeton University

837

Simplicity and Monotonicity of Lee-Yang Zeros
Hidetoshi Nishimori and Robert B. Griffiths, Carnegie-Mellon Uni-
versity
Infinite Differentiability for One-Dimensional Spin System with Long Range Random Interaction
Brunello Tirozzi, University of Rome and Rutgers University
The Thermodynamic Limit and the Replica Method for Short Range
Random Systems
J. L. van Hemmen and R. G. Palmer, Duke University
The Two-Dimensional One-Component Plasma with a Logarithmic Inter- action
Bernard Jancovici, Université de Paris XI
Boundary Conditions and Mermin's Argument for the 2-D Jellium
Danilo Merlini, Ruhr Universität
Some Results about Clustering
C. M. Newman, University of Arizona
Decay of Correlations in the One-Dimensional Ising Model with $J_{ij} = i-j ^{-2}$
John Z. Imbrie, Harvard University
Generic Triviality of Phase Diagrams
Robert Israel, Rutgers University
Infrared Catastrophe at $T < T_c$ for $n < 1$ in the <i>n</i> -Component $(\phi^2)^2$ -Field Theory
P D Guirati University of Chicago
The Ising Model in Non-Integer Dimension
George A Baker III Los Alamos National Laboratory
A Construction Generating Infinite Sequences of Lattice Animals
Ron Dickman The University of Texas at Austin
A New Scaling Law in Stochastic Geometry
R. Dickman and W. C. Schieve. The University of Texas at Austin
The Perimeter of Percolation Clusters as a Random Walk
Robert M. Ziff
Characterization of Chaotic States in Duffing's Equation
S. T. Chui and K. B. Ma, University of Delaware
A One-Dimensional Map Model for Diffusive Dynamics in Systems with
Translational Symmetry
M. Schell, S. Fraser, and R. Kapral, University of Toronto
Pattern Emergence and Selection in Crystal Growth
Michel Kerszberg, Harvard University
Exact Electron Eigenstates in an Incommensurate Potential
D. R. Grempel, Shmuel Fishman, and R. E. Prange, University of Maryland

Program of the 47th Statistical Mechanics Meeting

 Shmuel Fishman, D. R. Grempel, and R. E. Prange, University of Maryland Exact Results in Localization Bernard Souillard and Herve Kunz, Ecole Polytechnique, Lausanne Universality in the Kosterlitz-Thouless Transition John Z. Imbrie and C. Eugene Wayne, Harvard University A Bound on the Renormalized Coupling Constant in Four Dimensions Michael Aizenman, Princeton University Higgs Model T. Balaban, Harvard University The Break-Up of Invariant 2-Tori in Dissipative Dynamical Systems Scott J. Shenker and Leo P. Kadanoff, University of Chicago, and Mitchell J. Feigenbaum, Los Alamos National Laboratory Exact Solutions to the Feigenbaum Renormalization Group Equations for Intermittency B. Hu and J. Rudnick, University of Houston Attractors in Crisis Celso Grebogi, J. A. Yorke, and E. Ott, University of Maryland Existence of a Fixed Point of the Doubling Transformation for Area
 Maryland Exact Results in Localization Bernard Souillard and Herve Kunz, Ecole Polytechnique, Lausanne Universality in the Kosterlitz-Thouless Transition John Z. Imbrie and C. Eugene Wayne, Harvard University A Bound on the Renormalized Coupling Constant in Four Dimensions Michael Aizenman, Princeton University Higgs Model T. Balaban, Harvard University The Break-Up of Invariant 2-Tori in Dissipative Dynamical Systems Scott J. Shenker and Leo P. Kadanoff, University of Chicago, and Mitchell J. Feigenbaum, Los Alamos National Laboratory Exact Solutions to the Feigenbaum Renormalization Group Equations for Intermittency B. Hu and J. Rudnick, University of Houston Attractors in Crisis Celso Grebogi, J. A. Yorke, and E. Ott, University of Maryland
 Exact Results in Localization Bernard Souillard and Herve Kunz, Ecole Polytechnique, Lausanne Universality in the Kosterlitz-Thouless Transition John Z. Imbrie and C. Eugene Wayne, Harvard University A Bound on the Renormalized Coupling Constant in Four Dimensions Michael Aizenman, Princeton University Higgs Model T. Balaban, Harvard University The Break-Up of Invariant 2-Tori in Dissipative Dynamical Systems Scott J. Shenker and Leo P. Kadanoff, University of Chicago, and Mitchell J. Feigenbaum, Los Alamos National Laboratory Exact Solutions to the Feigenbaum Renormalization Group Equations for Intermittency B. Hu and J. Rudnick, University of Houston Attractors in Crisis Celso Grebogi, J. A. Yorke, and E. Ott, University of Maryland Existence of a Fixed Point of the Doubling Transformation for Area
 Bernard Souillard and Herve Kunz, Ecole Polytechnique, Lausanne Universality in the Kosterlitz-Thouless Transition John Z. Imbrie and C. Eugene Wayne, Harvard University A Bound on the Renormalized Coupling Constant in Four Dimensions Michael Aizenman, Princeton University Higgs Model T. Balaban, Harvard University The Break-Up of Invariant 2-Tori in Dissipative Dynamical Systems Scott J. Shenker and Leo P. Kadanoff, University of Chicago, and Mitchell J. Feigenbaum, Los Alamos National Laboratory Exact Solutions to the Feigenbaum Renormalization Group Equations for Intermittency B. Hu and J. Rudnick, University of Houston Attractors in Crisis Celso Grebogi, J. A. Yorke, and E. Ott, University of Maryland Existence of a Fixed Point of the Doubling Transformation for Area
 Universality in the Kosterlitz-Thouless Transition John Z. Imbrie and C. Eugene Wayne, Harvard University A Bound on the Renormalized Coupling Constant in Four Dimensions Michael Aizenman, Princeton University Higgs Model T. Balaban, Harvard University The Break-Up of Invariant 2-Tori in Dissipative Dynamical Systems Scott J. Shenker and Leo P. Kadanoff, University of Chicago, and Mitchell J. Feigenbaum, Los Alamos National Laboratory Exact Solutions to the Feigenbaum Renormalization Group Equations for Intermittency B. Hu and J. Rudnick, University of Houston Attractors in Crisis Celso Grebogi, J. A. Yorke, and E. Ott, University of Maryland Existence of a Fixed Point of the Doubling Transformation for Area
 John Z. Imbrie and C. Eugene Wayne, Harvard University A Bound on the Renormalized Coupling Constant in Four Dimensions Michael Aizenman, Princeton University Higgs Model T. Balaban, Harvard University The Break-Up of Invariant 2-Tori in Dissipative Dynamical Systems Scott J. Shenker and Leo P. Kadanoff, University of Chicago, and Mitchell J. Feigenbaum, Los Alamos National Laboratory Exact Solutions to the Feigenbaum Renormalization Group Equations for Intermittency B. Hu and J. Rudnick, University of Houston Attractors in Crisis Celso Grebogi, J. A. Yorke, and E. Ott, University of Maryland Existence of a Fixed Point of the Doubling Transformation for Area
 John Z. Imbrie and C. Eugene Wayne, Harvard University A Bound on the Renormalized Coupling Constant in Four Dimensions Michael Aizenman, Princeton University Higgs Model T. Balaban, Harvard University The Break-Up of Invariant 2-Tori in Dissipative Dynamical Systems Scott J. Shenker and Leo P. Kadanoff, University of Chicago, and Mitchell J. Feigenbaum, Los Alamos National Laboratory Exact Solutions to the Feigenbaum Renormalization Group Equations for Intermittency B. Hu and J. Rudnick, University of Houston Attractors in Crisis Celso Grebogi, J. A. Yorke, and E. Ott, University of Maryland Existence of a Fixed Point of the Doubling Transformation for Area
 A Bound on the Renormalized Coupling Constant in Four Dimensions Michael Aizenman, Princeton University Higgs Model T. Balaban, Harvard University The Break-Up of Invariant 2-Tori in Dissipative Dynamical Systems Scott J. Shenker and Leo P. Kadanoff, University of Chicago, and Mitchell J. Feigenbaum, Los Alamos National Laboratory Exact Solutions to the Feigenbaum Renormalization Group Equations for Intermittency B. Hu and J. Rudnick, University of Houston Attractors in Crisis Celso Grebogi, J. A. Yorke, and E. Ott, University of Maryland Existence of a Fixed Point of the Doubling Transformation for Area
 Michael Aizenman, Princeton University Higgs Model Balaban, Harvard University The Break-Up of Invariant 2-Tori in Dissipative Dynamical Systems Scott J. Shenker and Leo P. Kadanoff, University of Chicago, and Mitchell J. Feigenbaum, Los Alamos National Laboratory Exact Solutions to the Feigenbaum Renormalization Group Equations for Intermittency B. Hu and J. Rudnick, University of Houston Attractors in Crisis Celso Grebogi, J. A. Yorke, and E. Ott, University of Maryland
 Higgs Model <i>T. Balaban</i>, Harvard University The Break-Up of Invariant 2-Tori in Dissipative Dynamical Systems Scott J. Shenker and Leo P. Kadanoff, University of Chicago, and Mitchell J. Feigenbaum, Los Alamos National Laboratory Exact Solutions to the Feigenbaum Renormalization Group Equations for Intermittency B. Hu and J. Rudnick, University of Houston Attractors in Crisis Celso Grebogi, J. A. Yorke, and E. Ott, University of Maryland
 T. Balaban, Harvard University The Break-Up of Invariant 2-Tori in Dissipative Dynamical Systems Scott J. Shenker and Leo P. Kadanoff, University of Chicago, and Mitchell J. Feigenbaum, Los Alamos National Laboratory Exact Solutions to the Feigenbaum Renormalization Group Equations for Intermittency B. Hu and J. Rudnick, University of Houston Attractors in Crisis Celso Grebogi, J. A. Yorke, and E. Ott, University of Maryland Existence of a Fixed Point of the Doubling Transformation for Area
 The Break-Up of Invariant 2-Tori in Dissipative Dynamical Systems Scott J. Shenker and Leo P. Kadanoff, University of Chicago, and Mitchell J. Feigenbaum, Los Alamos National Laboratory Exact Solutions to the Feigenbaum Renormalization Group Equations for Intermittency B. Hu and J. Rudnick, University of Houston Attractors in Crisis Celso Grebogi, J. A. Yorke, and E. Ott, University of Maryland Existence of a Fixed Point of the Doubling Transformation for Area
 Scott J. Shenker and Leo P. Kadanoff, University of Chicago, and Mitchell J. Feigenbaum, Los Alamos National Laboratory Exact Solutions to the Feigenbaum Renormalization Group Equations for Intermittency B. Hu and J. Rudnick, University of Houston Attractors in Crisis Celso Grebogi, J. A. Yorke, and E. Ott, University of Maryland Existence of a Fixed Point of the Doubling Transformation for Area
Mitchell J. Feigenbaum, Los Alamos National Laboratory Exact Solutions to the Feigenbaum Renormalization Group Equations for Intermittency B. Hu and J. Rudnick, University of Houston Attractors in Crisis Celso Grebogi, J. A. Yorke, and E. Ott, University of Maryland Existence of a Fixed Point of the Doubling Transformation for Area
 Exact Solutions to the Feigenbaum Renormalization Group Equations for Intermittency B. Hu and J. Rudnick, University of Houston Attractors in Crisis Celso Grebogi, J. A. Yorke, and E. Ott, University of Maryland Existence of a Fixed Point of the Doubling Transformation for Area
Intermittency B. Hu and J. Rudnick, University of Houston Attractors in Crisis Celso Grebogi, J. A. Yorke, and E. Ott, University of Maryland Existence of a Fixed Point of the Doubling Transformation for Area
B. Hu and J. Rudnick, University of Houston Attractors in Crisis Celso Grebogi, J. A. Yorke, and E. Ott, University of Maryland Existence of a Fixed Point of the Doubling Transformation for Area
Attractors in Crisis Celso Grebogi, J. A. Yorke, and E. Ott, University of Maryland Existence of a Fixed Point of the Doubling Transformation for Area
Celso Grebogi, J. A. Yorke, and E. Ott, University of Maryland Existence of a Fixed Point of the Doubling Transformation for Area
Existence of a Fixed Point of the Doubling Transformation for Area
Existence of a fixed route of the Doubling Hanstormation for fired
Preserving Mans of the Plane
Have Koch Hervord University
man's Koch, marvaid Oniversity
Diset of Time-Dependence and the Transition to Chaos in Rayleign-
Benard Convection
R. W. Walden, Bell Laboratories
Perturbations of Integrable and Non-Integrable Hamiltonian Systems
Giovanni Gallavotti, University of Rome and Princeton University
Chaos, Bifurcation, Scaling, and Fractals
Benoit Mandelbrot, IBM Thomas J. Watson Research Center
Dynamical Models for Chaotic Physical Phenomena
Paul C. Martin, Harvard University
Round Table on Stochastic Perturbation of Deterministic Systems
Bernardo Huberman, Xerox, Pierre Hohenberg, Bell Laboratories,
Mitchell Feigenbaum, Los Alamos National Laboratory, and John
Greene, Chair, Princeton University
Cell Cluster Calculations of the Surface Entropy of Harmonic fcc and hcp
Crystals
Robert H. Kincaid and Dale A. Huckaby, Texas Christian University
An Inclusion-Exclusion Calculation of the Dipole-Dipole Energy of Cubic
and Hexagonal Ice
Robert H. Kincaid, Chris A. Hamilton, and Dale A. Huckaby. Texas
Christian University

Results on the 5 and 6 State Clock Model
Jan Tobochnik, Rutgers University
Kosterlitz-Thouless Transitions in Randomly Dilute Two-Dimensional Models
Sara A. Solla, Cornell University, and Eberhard K. Riedel, University of Washington
Spin-Glass Behavior in Frustrated Ising Models with Chaotic Renormali-
zation-Group Trajectories
Susan R. McKay, A. Nihat Berker, and Scott Kirkpatrick, Massachu-
setts Institute of Technology
Critical Phenomena with Long Range Correlated Disorder
Search for Topologically Stable Textures in Heisenberg Spin Classes
Christopher I. Henley, Harvard University
Breakdown of Linear Response Theory in Spin Glass
Ronald Fisch. Washington University
First- and Second-Order Phase Transitions with Random Rields at Low
Temperatures
D. Andelman, Massachusetts Institute of Technology
Nematic-Smectic A Transition with Partially Quenched Director Fluc-
tuations
Thomas C. Halsey and David R. Nelson, Harvard University
On the Concensus Construction of an Evolutionary Tree
James McGuire, University of Florida, and Colin Thompson, University
of Australia
Monte Carlo Simulation of Very Large Systems
Dietrich H. Stauffer, Boston University
Exact Results on Two-Dimensional Ising Crystals
<i>Royce Zia</i> , virginia Polytechnic Institute and State University
The Effect of an intelevant variable on Surface Tension <i>Bhaust B. Bant and David M. Japanew University of Ditteburgh</i>
Intringia Structure of the Critical Liquid Gas Interface
M Pohert and C Stuart Cornell University
A Link Between Wetting and Surface Criticality
Hisao Nakanishi. Cornell University
Equilibrium Theory of Non-Uniform Fluids
Jerome Percus, Courant Institute
Nonequilibrium Statistical Mechanics of Non-Uniform Fluids
E. G. D. Cohen, Rockefeller University
Large Fluctuations and Transitions for Nonequilibrium Steady States
E. Ben-Jacob, D. J. Bergman, B. J. Matkowsky, and Z. Schuss, Ohio
State University and Tel-Aviv University

Program of the 47th Statistical Mechanics Meeting

On $1/f$ Noise and Other Long Tailed Distributions
Michael F. Shlesinger and E. W. Montroll, University of Maryland
Random Walk Model for $1/f$ Noise
Mark Nelkin and Alan Harrison, Cornell University
Diffusion as a Function of Particle Size and Mass
A. Masters. Yale University
Solvent Effects in Branched Polymers. Percolation and the Potts Model
Antonio Coniglio, Boston University
Corrections to Scaling for Percolation
A. Margolina, H. E. Stanley, D. Stauffer, Z. Djordjevic, Boston Uni-
versity
Percolation and Site Decoration
G. Ord and S. G. Whittington, University of Toronto
Flory Theory for Directed Percolation and Directed Lattice Animals
S. Redner and A. Coniglio, Boston University
Network Communication as a Percolation
F. Y. Wu, Northeastern University
Phase Boundaries of the Isotropic Helical Potts Model on a Square Lattice
M. Kardar, Massachusetts Institute of Technology
Landau-Lifshitz Analysis for Stepped Surfaces
B. Clements and P. Kleban, University of Maine
Effect of Fluid Rotational Degrees of Freedom on Brownian Motion
L. E. Reichl, University of Texas
Space-Time Coarse Graining in Nonequilibrium Open Systems
M. Tokuyama, Michigan State University
Time-Dependent Correlations for the Quantum Van der Walls Ferro-
magnet
Dalcio K. Dacol, Princeton University
The Quantum Kinetic Equation and the Two-Time Resolvent Method
Tomio Petrosky and W. C. Schieve, University of Texas at Austin
Nonlinear Reciprocity Relations
C. Garrod and J. P. Hurley, University of California, Davis
Relaxation of a Gravitating Chain
Bruce N. Miller, Harold L. Wright, and W. E. Stein, Texas Christian
University
An Exact, Closed-Form Memory Function
O'Dae Kwon, Cornell University
Dynamics of Supercooled Fluids
A. C. Brown, C. Unger, and W. Klein, Boston University
Diffusion Limited Aggregation in D-Dimension
T. A. Witten and L. M. Sander, Exxon Research and Engineering

- A Correction to Scaling Exponent for Fluids
 - F. Zhang, Virginia Polytechnic Institute and State University
- Torque Algorithms: The Permanent Multipole and Induced Dipole Vector Contributions in a Set of Charge Distributions
 - E. S. Campbell and M. Mezei, New York University
- Molecular Fluids at a Wall-Some Preliminary Perturbation Theory Results
 - W. R. Smith and I. Nezbeda, University of Guelph
- Correlation Functions for Nematic Fluids
 - J. Perram, State University of New York at Stony Brook, and J. Lebowitz, Rutgers University
- Analytic Expression for Second Virial Coefficient of Hard Dumbbells Michael Wertheim, Rutgers University
- Simulations of Interacting Lattice Mapping Model in an Electric Field Sheldon Katz, Lafayette College and Rutgers University
- Charge Fluctuations and Screening for Coulomb Systems
 - L. Blum, University of Puerto Rico, C. Gruber, Ecole Polytechnic Federale, J. Lebowitz, Rutgers University, and P. Martin, Ecole Polytechnic Federale